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Abstract—Modern Android apps consist of both host app
code and third-party libraries. Traditional static analysis
tools conduct taint analysis for API misuses on the entire
app code, while third-party library (TPL) detection tools
focus solely on library code. Both approaches, however, are
prone to some inherent false negatives: taint analysis tools
may neglect third-party libraries or face timeouts/errors in
whole app-based analysis, and TPL detection tools are not
designed for pinpointing specific vulnerable methods. These
challenges underscore the need for enhanced identification
of insecure methods in Android apps, particularly for app
markets addressing open-source security incidents.

In this paper, we aim to complement the identification
of missed false negatives in both TPL detection and taint
analysis by directly identifying clones of insecure methods,
regardless of whether they are in the host app code or
a shrunk library. We propose MtdScout, a novel cross-
layer, method-level clone detection tool for Android apps.
MtdScout generates bytecode signatures for flawed source
methods using compiler-style interpretation and abstraction,
and efficiently matches them with target app bytecode us-
ing signature-mapped search trees. Our experiment using
ground-truth apps shows that MtdScout achieves the highest
accuracy among three tested clone detection tools, with
a precision of 92.5% and recall of 87.2%. A large-scale
experiment with 23.9K apps from Google Play demonstrates
MtdScout’s effectiveness in complementing both LibScout
and CryptoGuard by identifying numerous false negatives
they missed due to app shrinking, method-only cloning, and
inherent timeouts and failures in expensive taint analysis.
Additionally, our experiment uncovers four security findings
that highlight the disparities between MtdScout’s method-
level clone detection and package-level library detection.

∗Haoyu Ma and Zicheng Zhang are the co-first authors.
†Corresponding author: Daoyuan Wu. Work conducted while at CUHK.
‡Work conducted by Yan Wu while he was an MSc student at CUHK.
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Figure 1: Complementing app-oriented taint analysis and
TPL-based methods to address their false negatives.

1. Introduction

Modern Android apps typically comprise not only the
host app code but also third-party libraries, such as those
for common functionalities and advertisement [51], [39].
However, in the event of open-source security incidents,
vulnerabilities such as API misuse tend to be present
across a spectrum of insecure methods, subsequently im-
pacting apps that import or replicate code from these
methods. For example, the vulnerability discovered in the
Log4j library, which enabled attackers to execute arbitrary
code [3], [2], had a widespread impact on numerous global
companies [19]. It is thus crucial for app markets [34]
as well as companies with the Bring-Your-Own-Device
policy [65] to promptly assess the potential impact of in-
secure methods on their apps. However, both app markets
and companies often lack access to the source code of
these apps, making it challenging to use source code clone
detection tools for identifying those insecure methods.

Current methods for scanning open-source-introduced
insecure methods in Android bytecode include app-centric
static taint analysis and detection approaches based on
third-party libraries (TPL). Specifically, traditional static
analysis tools, including FlowDroid [27], Amandroid [67],
IccTA [50], JN-SAF [66], CryptoGuard [58], and Back-
Droid [68], treat the entire app code as a whole and
perform control- or data-flow taint analysis for API mis-



uses. In contrast, third-party library (TPL) detection tools,
such as the state-of-the-art ATVHunter [72], PHunter [70]
LibScan [69] and LibScout [30], focus exclusively on the
library code. These TPL detection tools employ library
package-level features and relationships to detect vulner-
able libraries similar to those in their databases.

However, as illustrated in Figure 1, both approaches
are susceptible to some inherent false negatives. Specifi-
cally, due to the high overhead associated with Android
taint analysis [28], taint analysis tools often neglect third-
party libraries [67] or encounter timeouts and internal
errors during whole app-based analysis [58]. As a result,
any insecure method in a missed library or in a failed
app would go undetected, resulting in a false negative.
Likewise, while TPL detection tools excel in identifying
libraries, they are not designed to pinpoint specific vulner-
able methods. Hence, when developers repurpose individ-
ual methods or classes from libraries – for example, only
an insecure library method is cloned into the app’s code –
a false negative could occur. Additionally, package-level
library detection can be affected by Android’s default app
shrinking [10]. This means that even if an insecure library
method is present in an app, other classes and methods
from the corresponding library might be shrunk, prevent-
ing the library from being identified by TPL detection
tools. These challenges underscore the need to improve
the identification of insecure methods in Android apps,
which is particularly vital for app markets and companies
that need to swiftly identify potential risks following open-
source security incidents.

In this paper, we aim to address the inherent false
negatives in existing app-oriented taint analysis and TPL-
based detection methods. Our insight is to directly identify
clones of insecure methods, ensuring coverage whether
they reside in the host app code or within a shrunk
library. By doing so, we also eliminate the need for ex-
pensive app-oriented taint analysis and enhance the gran-
ularity of library-based detection. Based on this insight,
we propose MtdScout, a novel cross-layer, method-level
clone detection tool tailored for detecting vulnerable open-
source method clones in Android apps. MtdScout employs
bytecode-level signatures, generated using a compiler-
style interpretation and abstraction of the source code,
enabling an efficient search for method clones within An-
droid app bytecode. This positions MtdScout as the first1
tool able to detect method-level code clones in Android
app DEX bytecode. Furthermore, MtdScout’s cross-layer
clone detection differentiates itself from other tools [62],
[29], [35], [73], [40] that either transform code into an
intermediate representation (e.g., LLVM bit code [29]) or
rely on supplemental context (e.g., git commit logs [35]).
In contrast, MtdScout neither bases its comparisons on in-
termediate representations nor requires additional context.

To build MtdScout, a notable challenge is how to
generate adequate bytecode-level signatures from partial
Java source code, and in a way that they can be precisely
searched. We address this challenge by employing two
measures proposed in §4. Firstly, to generate adequate sig-
natures that incorporate type information (e.g., a method’s

1. While there are some Android clone detection tools, e.g., [37], [33],
[60], they were for detecting cloned apps using a source app as input.
Our input is an insecure method from an open-source project or library.

return type), which is often absent in standalone library
source files, MtdScout begins by constructing a cross-
reference dictionary covering all essential details about
variables, classes, and methods. Subsequently, an abstract
syntax tree (AST) is built to restore the types based
on the cross-reference dictionary, followed by converting
statements into bytecode-level signatures. Secondly, to
facilitate an accurate search of the generated signatures
across various Android APK settings, MtdScout identifies
and follows major Android compiler optimizations to
adjust signatures at the bytecode level.

Another challenge is how to efficiently match hun-
dreds, if not thousands or more, of generated signatures
with each target bytecode, which can contain millions to
tens of millions of lines of code2. Moreover, this matching
also needs to be performed across large-scale apps, as
it is the designated scenario for MtdScout. To this end,
we propose a novel layered search over signature-mapped
search trees. Specifically, MtdScout divides each signature
into two parts, the order-sensitive and order-independent
portions, and organizes the signatures of identified inse-
cure methods into a pair of search trees. MtdScout then
conducts a layered search over an app-specific search tree
to narrow down the matching space of a target bytecode
progressively. Eventually, MtdScout requires only a depth-
first search (DFS)-based matching with the limited candi-
date bytecode. This approach allows MtdScout to directly
pinpoint the affected usage of a specific method.

To evaluate MtdScout, we first design a quantita-
tive experiment using non-obfuscated ground-truth apps
to assess the accuracy of MtdScout. We compared the
performance of MtdScout with two commonly used source
code clone detection tools, namely SourcererCC [59] and
ReDeBug [48]. Our experiment showed that MtdScout
achieves the highest accuracy, with an F1 score of 89.5%,
precision of 92.5%, and recall of 87.2%; see §6.2.

We further conduct a large-scale experiment to assess
MtdScout effectiveness in complementing the identifica-
tion of missed false negatives in both TPL detection
and taint analysis. For this purpose, we collected a large
dataset comprising 23,962 popular apps from all the 51
Google Play categories and applied MtdScout to the spe-
cific3 crypto misuse problem [43]. In this experiment, we
compared the results obtained by MtdScout with those
from LibScout [30], a widely used open-source library
detection tool, and CryptoGuard [58], a dedicated crypto
misuse detection tool that employs state-of-the-art crypto-
specific slicing techniques [58], [68].

The evaluation results show that MtdScout effectively
complements both LibScout and CryptoGuard by identi-
fying the false negatives they missed. Specifically, among
the 2,152 library-application pairs detected exclusively by
MtdScout from the 18 vulnerable libraries tested by both
tools, we sampled and found that around 32% of these
false negatives were due to Android app shrinking [10],
and 63% were caused by method-only cloning. Only 5%
were MtdScout’s own false positives. Furthermore, Mtd-
Scout identified a considerable number of false negatives
missed by CryptoGuard, about 47 apps per category out

2. Based on our measurement of the bytecode of 23.9K apps in §6.3.
3. MtdScout can detect various types of source code security issues,

but for the purpose of evaluation, we need to focus on a specific problem.



of the total 470 apps in each Google Play category. Many
of these were due to CryptoGuard’s timeouts and errors,
which are difficult to avoid due to the inherently expensive
nature of whole app-based analysis like that performed by
CryptoGuard. In contrast, MtdScout was able to comple-
ment the identification of 5,897 insecure methods from the
2,304 apps that CryptoGuard could not analyze. Beyond
its effectiveness, MtdScout also demonstrated significantly
improved efficiency compared to CryptoGuard, with a
median analysis time of only 52 seconds per app, which
is 31.6 times faster than CryptoGuard.

Our large-scale experiment not only identified vul-
nerabilities in apps from Internet giants like Tencent
and Xiaomi, but also revealed four security findings that
highlight the disparities between MtdScout’s method-level
clone detection and traditional package-level library de-
tection. These findings include: (i) the potential removal
or modification of class files within the host app package
due to Android app shrinking, leading to lower similarity
scores in package-level library detection; (ii) the preva-
lence of code replication in apps instead of library imports,
rendering package-level library detection ineffective; (iii)
the unreliable nature of package-level library detection in
identifying vulnerable library methods, as the presence
of a library in an app does not guarantee corresponding
vulnerable methods; and (iv) the existence of multiple
crypto misuses within single methods, a finding that can-
not be revealed by package-level approaches. These find-
ings highlight the importance of method-level detection in
effectively uncovering vulnerabilities and security issues,
surpassing the limitations of package-level analysis.

Availability. To facilitate future research, we have
made the dataset and our evaluation results publicly avail-
able on https://github.com/MtdScout/MtdS Dataset.

2. Background and Related Work

DEX Bytecode and dexdump File. While Android
apps are developed in Java/Kotlin, they are compiled
into Dalvik Executable (DEX) format bytecode when
generating the Android application package (APK), the
installation package for Android apps. The DEX bytecode
is a highly structured data file, and we can use an official
Android tool called dexdump [1], [14] to convert it into
a dexdump file, which is a human-readable text. In this
paper, MtdScout’s searching process is based on the DEX
format instructions in the dexdump file [12].

Cryptographic Misuse. Developers use cryptographic
primitives such as block ciphers and message authenti-
cation code (MAC) to enhance the security of data and
communications [43]. However, despite well-defined cryp-
tographic concepts aimed at ensuring security, develop-
ers may incorrectly implement cryptography (i.e., crypto-
graphic misuse) in their apps due to either a lack of crypto-
graphic knowledge or human error, leading to a false sense
of security [54]. Existing cryptographic misuse detection
tools are typically categorized into two broad groups:
static analysis (e.g., CryptoLint [43], Binsight [56], Mal-
loDroid [44], CryptoGuard [58], BackDroid [68], etc.) and
dynamic analysis (e.g., SMVHunter [61], AndroSSL [46],
etc.). In this paper, although MtdScout is designed to iden-
tify a variety of DEX code issues, our specific focus for
evaluation is on detecting cryptographic misuse problems.

Detection of (open-source) libraries/projects in
apps. Existing library detection tools utilize three main
approaches: white-listing, feature matching, and cluster-
ing. Book et al. [32] and Grace et al. [47] compile lists
of well-known ad libraries. LibScout [30] analyzes the
package structure for feature generation. Wukong [63]
and LibRadar [55] generate features based on the system
APIs used by libraries. LibD [53] utilizes call graphs,
inheritance, and inclusion relations for clustering. LibEx-
tractor [74] uses class dependency relations for candidate
clustering. StubDroid [26] generates a summary for each
library class based on the data flow of the library’s byte-
code or source code. Similarly, OSSPolice [41] employs
project-level features (i.e., normalized class signatures,
string constants, and function centroids) to detect license
violations from the use of open-source software. These
tools primarily focus on the high-level package structure
of libraries, comparing features of entire packages. In
contrast, MtdScout employs fine-grained, function-level
features (i.e., API invocation signatures, string constants
and their lengths and concatenations, and exception sig-
natures) to focus on identifying insecure method clones
derived from open-source code.

(Cross-layer) Code Clone Detection. Existing code
clone detection methods typically require the query and
target input to be at the same level. DECKARD [49] gen-
erates characteristic vectors from the source code’s Ab-
stract Syntax Tree (AST) and detects code clones by cal-
culating the vector similarity. SourcererCC [59] tokenizes
source code blocks for clone detection, CCAligner [64]
and DroidCC [24] use an order-sensitive token model
with a sliding window, and AndroClonium [60] detects
bytecode-level code clones using execution traces. An-
Darwin [38] utilizes Program Dependency Graphs (PDG)
to calculate semantic vectors for individual methods at
the bytecode level and employs multiple clustering to
efficiently detect method clones across a large number
of apps. NiCad [36] compares normalized fragments line
by line using an optimized longest common subsequence
algorithm to detect clones. CCLearner [52] tokenizes the
code of clone and non-clone method pairs to build a deep
learning-based classifier for method clone detection.

Some approaches have proposed cross-layer clone de-
tection tools to meet diverse detection needs. FIBER [73]
matches fine-grained binary signatures for C++ security
patches, OSSPatcher [40] identifies unpatched apps by
comparing patch features and applying compiled patches,
Feichtner et al. [45] convert ARM binaries to LLVM in-
termediate representation, and CLCMiner [35] utilizes git
commit logs for additional insights. In contrast, MtdScout
is the first tool to detect method-level code clones in DEX
code using the source code of subject methods as input.

3. MtdScout Overview

3.1. Threat Model

The threat model of this paper is based on three
assumptions: (1) Adversaries have the capability to ex-
ploit zero-day vulnerabilities within open-source libraries
to target vulnerable applications. However, they cannot
directly modify the applications owned by the app market;

https://github.com/MtdScout/MtdS_Dataset
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Figure 2: The overall workflow of MtdScout.

(2) Market owners or end users lack access to the source
code of the applications but have the ability to acquire
the source code of the vulnerable open-source libraries;
and (3) App developers import or replicate methods from
open-source libraries without disclosing library informa-
tion to the market owner.

The objective is to facilitate market owners in swiftly
identifying insecure methods within affected applications
and estimating the impact on their repositories. We address
two primary threats: (1) Attackers inject vulnerabilities
into some open-source libraries, which are later used by
developers in the victim apps; and (2) Developers of open-
source libraries unintentionally introduce vulnerabilities
into their libraries’ methods.

3.2. Workflow

MtdScout follows a workflow depicted in Figure 2,
consisting of three offline phases and one online phase.

In phase 0 , we collect source-level insecure meth-
ods from open-source projects and libraries. For exam-
ple, we can use LGTM [9] to identify insecure methods
from open-source projects, or query the GitHub Advisory
Database [16] to retrieve vulnerable open-source libraries.

In phase 1 , MtdScout employs ANTLR [5] to con-
struct an Abstract Syntax Tree (AST) for each Java source
file containing the insecure method(s). Then, according to
the description of each insecure method, MtdScout iden-
tifies its subtree in the AST. With the AST information,
MtdScout generates a bytecode-level signature according
to the design described in §4.

In phase 2 , MtdScout partitions each signature into an
order-sensitive portion and an order-independent portion.
These portions are then mapped to a pair of overall
search trees, covering both the order-sensitive and order-
independent parts of the signatures, as detailed in §5.1.

After completing the offline preparations described
above, MtdScout is ready to perform online operations
in phase 3 by conducting layered searches on each
method within the subject Android app’s bytecode file.
This process involves identifying nodes from the order-
sensitive search tree at specific depths, allowing for effi-
cient elimination of methods that cannot possibly match

any signature (§5.2). Then, MtdScout performs signature
matching in a depth-first search manner on the order-
sensitive tree with pruning, seeking root-to-leaf paths that
preserve the proper sequence of nodes within the same
method. Finally, MtdScout verifies these potential matches
against the order-independent search tree to confirm the
presence of the order-independent portion in the matched
signatures (§5.3).

4. Source-to-Bytecode Signature Generation

In this section, we first discuss in §4.1 the types
of signatures that should be generated to ensure our
signature-based matching is both adequate and resilient.
Then, from §4.2 to §4.4, we elaborate on how we manage
the three types of signatures during the source-to-bytecode
signature generation process.

4.1. The Types of Signatures to Generate
Figure 3 illustrates an example signature (in B ) gen-

erated by MtdScout using solely the partial4 source code
information (e.g., a vulnerable method) depicted in A .
The objective here is that the generated signature could
be precisely searched in the dexdump file of an app, as
shown in the C part of Figure 3. As such, our signatures
should not only adequately reflect the original code se-
mantics but also be resilient to common obfuscation and
compiler optimizations. Specifically, Android apps often
shield their code using syntax-level obfuscation tools like
ProGuard [8], which has been incorporated into Android’s
default app shrinking process [10]. Moreover, bytecode
compiler optimization further muddles the task of match-
ing constant strings embedded in different apps.

The first and most important type of signature is
invocation signatures, which depicts the key statements
within a method. For these signatures, we focus on
standard API methods rather than self-defined custom
methods, and there are three reasons for this. Firstly,
standard APIs are not subject to ProGuard-like obfusca-
tion because the Android runtime would not recognize
an obfuscated API invocation. For example, the standard
API MessageDigest.digest() (highlighted in the
red box) remains intact in the dexdump file, as seen in
C of Figure 3. In contrast, ProGuard would rename a
self-defined method, such as displayInt() (shown in
the blue box in A ) to a meaningless name like b()
(indicated in the blue box in C ). Secondly, a method invo-
cation in Java source might present only abbreviated class
and method names. This makes determining their com-
plete types challenging, particularly when involving non-
standard class dependencies. Lastly, self-defined methods
might undergo method inlining, where an invocation can
be substituted by the body of method being called, ren-
dering the search for this invocation unsuccessful.

Besides invocation signatures, we consider two other
types of signatures, namely constant strings and excep-
tion signatures, to enhance the semantics of the gen-
erated signatures. Like standard APIs, constant strings
remain unobfuscated, even after being processed by Pro-
Guard, as illustrated by the green solid box in A

4. As such, MtdScout cannot use a compiler to generate bytecode.
Moreover, our signatures must be generalized for matching, whereas the
signatures generated by compilers are intended only for execution.



public byte[] calMD5(String input){
try {
byte[] md5 = MessageDigest.getInstance("MD5").digest(input.getBytes(StandardCharsets.UTF_8));

displayInt("MD5".length());

} catch (NoSuchAlgorithmException e) {

displayString("Error getting md5 message digest implementation: " + e.getMessage());
}
return md5;

}

constant string

standard API method

self-defined custom method

string length 

try-catch exception

string concatenation
Java source example of a vulnerable method

|[0bd178] b.b.a.a.a:(Ljava/lang/String;)[B
|0000: const-string v0, "MD5" 
|0002: invoke-static {v0}, Ljava/security/MessageDigest;.getInstance:(Ljava/lang/String;)Ljava/security/MessageDigest; 
... 
|0008: invoke-virtual {v3, v1}, Ljava/lang/String;.getBytes:(Ljava/nio/charset/Charset;)[B 
...
|000c: invoke-virtual {v0, v3}, Ljava/security/MessageDigest;.digest:([B)[B 

|000f: const/4 v3, #int 3 

|0010: invoke-virtual {v2, v3}, Lb/b/a/a;.b:(I)V 
...
|0015: const-string v0, "Error getting md5 message digest implementation: " 
...
|001b: invoke-virtual {v3}, Ljava/security/NoSuchAlgorithmException;.getMessage:()Ljava/lang/String; 
...
|001f: invoke-virtual {v0, v3}, Ljava/lang/StringBuilder;.append:(Ljava/lang/String;)Ljava/lang/StringBuilder; 
..
|0026: invoke-virtual {v2, v3}, Lb/b/a/a;.c:(Ljava/lang/String;)Ljava/lang/String; 
...

catches       : 1
0x0000 - 0x0013
Ljava/security/NoSuchAlgorithmException; -> 0x0014 The compiled method in DEX code

invoke-static.* \{(v[0-9]+, )*(v[0-9]+)?\}, Ljava/security/MessageDigest;\.getInstance:\(Ljava/lang/String;\)Ljava/security/MessageDigest;
invoke-(virtual|super|interface).* \{(v[0-9]+, )*(v[0-9]+)?\}, Ljava/lang/String;\.getBytes:\(Ljava/nio/charset/Charset;\)\[B
invoke-(virtual|super|interface).* \{(v[0-9]+, )*(v[0-9]+)?\}, Ljava/security/MessageDigest;\.digest:\(\[B\)\[B
invoke-(virtual|super|interface).* \{(v[0-9]+, )*(v[0-9]+)?\}, Ljava/security/MessageDigest;\.getMessage:\(\) Ljava/lang/String;

[METHOD INVOCATION]

const-string v[0-9]+, “MD5”
const-string v[0-9]+, “Error getting md5 message digest implementation: .*”

[CONSTANT STRING]

Ljava/security/NoSuchAlgorithmException; -> 0x[0-9a-fA-F]{4}

[EXCEPTION]

The generated signature of the method

A

B

C

Figure 3: An example of the Java source, the generated method signature, and the matched DEX code. For simplicity,
some unimportant instructions are omitted. The legends in the top right corner explain the meanings of different boxes.

and C . Moreover, try-catch exception information, such
as NoSuchAlgorithmException (highlighted in the
gray box of Figure 3), is another valuable supplement
to differentiate between subtly distinct methods. We will
explain the details of these two signatures and their gen-
eration in §4.3 and 4.4, respectively.

4.2. Type Recovery for Invocation Signatures

To faithfully generate invocation signatures from the
Java source code, a notable challenge is to recover the
full type information of the invocation statements. This in-
cludes (a) the method name, (b) the complete class name,
(c) the full types of the parameters, (d) the modifier (e.g.,
invoke-static or invoke-virtual), and (e) the
return type. This task is challenging even for standard API
statements, especially for statements with multiple method
invocations, because our AST parsing only provides the
last-level class name, not its full type. For example, the
AST node for MessageDigest does not capture the full
type Ljava/security/MessageDigest; found in
the dexdump file (see C in Figure 3). As a result, when
cross-referencing variables, classes, and method invoca-
tions to deduce the appropriate bytecode patterns for in-
vocation signatures, the information provided by the AST
nodes is incomplete. Gathering and correlating the context
for each invocation statement is complex. To solve this
problem, we build a cross-ref dictionary to recover the full

type of each necessary element and identify the correct
method information based on the source code’s context.

Recovering full types using a cross-ref dictionary.
MtdScout employs a dictionary-based approach to retrieve
the aforementioned full type information, namely items (a)
to (e), for crafting bytecode-level signatures. Specifically,
MtdScout constructs a cross-reference dictionary for the
given Java source code. This dictionary creates mappings
between all source-level identifiers and their respective
full type information. As MtdScout traverses through the
method body, it looks up this dictionary to identify the
comprehensive method description or class type for every
invocation or variable declaration within the AST. While
MtdScout can directly refer to the associated AST nodes
to obtain item (a) and the abbreviated class/parameter
names for items (b) and (c), it primarily leans on the
dictionary to acquire the complete type names for items
(b) and (c). Using these elements as the method descriptor,
MtdScout then identifies the precise method by looking
up the dictionary once more. Subsequently, details for
items (d) and (e) can be derived from the metadata of the
identified method. Throughout this procedure, MtdScout
also takes into account the superclass and interfaces of
each class for handling Java’s polymorphism.

For the statements with multiple method invocations,
their items (b) and (c) may be derived from the return
values of other method invocations. Considering the third
line in A of Figure 3, the digest() method is invoked
by the return value of the invocation java.security.



MessageDigest.getInstance(), and its param-
eter is the return value of the method input.
getBytes(). Thus, accurately identifying an invoca-
tion only becomes possible after determining the full
types of its caller class and/or parameters. To address
this issue, we look to a characteristic of the AST.
Within the AST, this statement line splits into two sub-
statements: MessageDigest.getInstance() and
digest(). These are both child nodes of the origi-
nal statement node, with digest() positioned on the
right side. Moreover, the node for digest() will have
all nodes related to input.getBytes() as its de-
scendants. This breakdown continues until the node rep-
resents a variable or class with a full type that can
be directly referenced in the dictionary. Therefore, dur-
ing a Depth-First Search (DFS), the statement nodes
for MessageDigest.getInstance() and input.
getBytes() are assured to be processed before the node
for digest(). Leveraging this characteristic, MtdScout
can resolve all method invocations within an AST based
on the completion order of the DFS, consequently acquir-
ing all type information for each node traversed.

During traversal, if the parameter type of a standard
API method cannot be resolved (for instance, when the
parameter is the return value of a non-standard method
imported from another file), MtdScout checks if the dic-
tionary contains only one potential match for that method,
where the descriptions are consistent except for that
parameter. If such a match is found, MtdScout selects
that candidate as the identified method and continues the
traversal. If not, it skips that method to prevent potential
false positives, with one exception: when the invocation
has been determined to be a method of a standard Java
class but cannot be accurately identified due to parameter
types. We handle this differently, as explained below.

Handling corner cases, invocation types, and
register allocation using fuzzy signatures. Despite our
best efforts, there are times when MtdScout might not
be able to accurately identify a standard API method
invocation because of difficulties in determining the
types of its parameters. This challenge primarily arises
because MtdScout’s signature generation process is
constrained to a file’s scope. As a result, parameter
types imported from another file might not be identified
correctly. To mitigate this, when a standard API
invocation slated for inclusion in a method signature
has such unresolvable parameters, MtdScout substitutes
its modifier, return type, and parameter types with
regular expressions while constructing the corresponding
bytecode instruction. This creates a fuzzy pattern
that could still match, though it carries the potential
risk of yielding false positives. For example, if the
parameters of String.getbytes() cannot be
resolved, MtdScout converts it into a fuzzy pattern
like “invoke-.* {(v[0-9]+, )*(v[0-9]+)?},
Ljava/lang/String;\.getBytes:\ (. ∗ \).*”.
Note that this approach is merely a fallback for a minority
of instances where method identification is unsuccessful.
In the majority of cases, MtdScout is capable of crafting
precise bytecode instruction patterns.

Besides the corner cases, MtdScout may not generate
the exact bytecode instruction for (1) the modifiers of
method invocations (e.g., invoke-virtual), (2) the

allocation of registers (e.g., {v0, v3}), and (3) the ac-
tual addresses of exceptions (e.g., 0x0014). Therefore,
MtdScout generates a fuzzy pattern for ambiguous in-
vocation signatures. Within this pattern, each uncertain
element is substituted with a regular expression designed
to accommodate all potential scenarios. For example,
invoke-(virtual|super|interface) is used
for modifiers, and \{(v[0-9]+, )*(v[0-9]+)?\}
addresses register allocation, as shown in B in Figure 3.

4.3. Addressing String Compiler Optimizations
Operations related to constant strings in a source-

level method may undergo various optimizations during
compilation to improve program performance. This can
notably affect the accuracy of MtdScout’s signature gen-
eration process and, subsequently, its signature matching.
To address this issue, we handle three common types of
string optimizations during compilation as follows.

Constant string location and sequence. Firstly, the
compiler could relocate all constant strings to the begin-
ning of a method’s bytecode in an unpredictable sequence,
ensuring each string appears only once, regardless of
its usage frequency in the source code. Knowing this
feature, MtdScout separates all constant string declara-
tions involved in a signature from the method invoca-
tions and omits any repeated constant strings within the
same method. This strategy influences the processing of
constant strings during signature matching, which will be
discussed later in §5.

Constant string concatenation. It is common for
compilers to concatenate multiple constant strings, leading
to various bytecode instruction versions based on the op-
timizations applied. For example, the string concatenation
“I” + “am” + “good” appears as a single string “Iamgood”
in bytecode, or as three separate strings (“I”, “am”, and
“good”) accompanied by two java.lang.String.
append() invocations (see the ‘string concatenation’
in Figure 3). To address this ambiguity, MtdScout em-
ploys a unified approach to transform the constant string
into regular expressions that accommodate both scenarios.
Specifically, when a constant string is preceded and/or
followed by a “+”, MtdScout replaces it with a wildcard
(representing any characters in the regular expression) and
then adds it as an independent constant string into the
signature. For instance, the aforementioned string “I” +
“am” + “good” is converted to "I.*", ".*am.*", and
".*good", with each segment required to match at the
bytecode level, as described later in §5.3. Furthermore,
this approach also accommodates concatenations between
constant strings and variables, as illustrated in the second
line of CONSTANT STRING in B of Figure 3.

Length of constant strings. For a source-level state-
ment that calculates the length of a constant string,
the compiler might optimize it by directly encoding
the string’s length into the resulting bytecode as an
integer, rather than invoking the API java.lang.
String.length(). An example is shown in the ‘string
length’ in Figure 3, where the expected return value of
"MD5".length(), namely #int 3, is used directly
after compilation. While this optimization eliminates the
overhead of an API call, it is uncertain whether a particular
app would actually implement it. To avoid this uncer-
tainty during the signature generation process, MtdScout



refrains from generating a bytecode pattern for the API
java.lang.String.length().

4.4. Supplementing Signatures with the Try-
Catch Exception Information

When a program encounters exceptions, programmers
must handle them by catching the exceptions and writing
code to address these situations. This information is also
an important feature of a method that can help us more
accurately identify the correct method in DEX code for
two reasons. Typically, these exceptions are associated
with specific method invocations and can help capture
certain standard APIs that were missed during the previous
method invocation conversion process. On the other hand,
standard exceptions can also be imported by calls to self-
defined methods. Since these self-defined methods are
not the focus of the signature generation, including such
exceptions in the signature can indicate the presence of
some self-defined method invocations.

When traversing the method’s AST, MtdScout re-
trieves exception types from the catch parentheses and
converts them into DEX format signatures. In the dex-
dump file, these exceptions are listed separately after each
method body, and the order of the exceptions is not fixed
(see the last line of C in Figure 3). MtdScout matches
them in a manner similar to that used for constant strings,
with the detailed matching process explained in §5.

5. Layered Signature Search and Matching

After generating signatures for insecure methods, Mtd-
Scout proceeds to the online phase, where it searches
large-scale repositories for Android apps that may contain
code clones matching these signatures. However, this task
is not as straightforward. For example, matching 400
method signatures with an app comprising 30,000 meth-
ods using a traditional approach would require 12 million
attempts, rendering it impractical. To address this, we
propose a novel signature matching approach that signifi-
cantly enhances the throughput of MtdScout in large-scale
method clone detection. This approach maps signature
patterns to search trees and employs a layer-based search
strategy to efficiently reduce the search space.

5.1. Mapping and Merging Hundreds of Method
Signatures onto Two Search Trees

As explained in §4.1, the signature for an insecure
method generated by MtdScout includes standard API
invocations, constant strings, and try-catch exceptions.
Among these, the sequence of standard API invocations
is the order-sensitive part of the signature, as the order
of these instructions is a crucial feature of a method. On
the other hand, the other two types are considered to be
the order-independent part of the signature, as they can be
arranged in any order in the bytecode by a compiler with-
out affecting a method’s semantics. Therefore, MtdScout
divides the signatures accordingly, mapping the order-
sensitive and order-independent parts of these signatures
to a pair of search trees, respectively. For simplicity, we
denote this pair of search trees as T = {Tos, Toi}.

Figure 4 illustrates an example how MtdScout con-
structs {Tos, Toi}. Specifically, Tos is designed with the
following features:

• Each node is mapped to a specific API invocation
pattern (e.g., I1 in Figure 4) belonging to one or
more method signatures (e.g., Sig2, Sig3, Sig4);

• The depth of a node in Tos indicates the position
of the corresponding pattern within the respective
signature(s). Hence, all nodes on the same path of
Tos together represent the exact sequence of API in-
vocations in a signature (e.g., I1, I2, I3 of Sig2);

• The same invocation pattern can be mapped to multi-
ple nodes at different depths for different signatures
(e.g., I2 of Sig1 at depth 3 and I2 of Sig2 at
depth 2).

Since different signatures are likely to start with distinct
patterns, MtdScout builds a super root for Tos that points
to all the nodes mapped to the first invocation patterns
of the signatures, allowing every node of the tree to be
reached with a single traversal. Additionally, for each path
of the tree, a special-purpose leaf node is attached to
serve as the descriptor of the exact signature indicated
by the path, such as the leaf Sig1, Sig2, Sig3, and
Sig4 nodes in Tos. This signature descriptor contains
the identity of the method and its corresponding project,
facilitating the correlation between the two parts of a
signature across the two search trees.

Following the design of Tos, Toi also has each of
its nodes mapped to either a constant string declaration
pattern or a try-catch exception pattern. However, this
second tree is constructed differently, with the super root
pointing directly to signature descriptor nodes, which are
duplicates of those in Tos. Each signature descriptor then
points to a linked list of nodes that are mapped to patterns
of the corresponding signature. The linked lists are not
arranged in any specific order, as the nodes in Toi are
order-independent. Note that some signatures may only
involve Tos, meaning they contain only API invocation
signatures. In such cases, MtdScout sets a mark in the
corresponding leaf node of Tos so that it can report
matches for these signatures without consulting Toi.

5.2. Reducing Bytecode Matching Space via Lay-
ered Search

Once the search trees are constructed, it is easy to
observe that if a subject method matches with a signature
containing an order-sensitive portion of x instruction pat-
terns, then these patterns must appear on a specific path
of Tos that is of depth x (excluding the super root and
signature descriptor). By further relaxing this proposition,
a fairly intuitive necessary condition for successful signa-
ture matching using the search tree pair T can be inferred:
For a subject method to be considered a potential match to
a signature with x patterns in its order-sensitive portion,
the method must hit at least one node at each depth of
Tos until depth x.

We found that this necessary condition can help Mtd-
Scout quickly reduce the search space for its signature-
matching process. Specifically, as illustrated in Figure 4,
MtdScout groups nodes of the same depth (excluding
the super root and signature descriptors) from Tos into
a depth-specific search set, creating a collection of such
search sets for all possible depths of the tree. Let Sn

denote the search set corresponding to depth n. For any
particular method signature generated by MtdScout, if the
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Figure 4: An example illustrating MtdScout’s search tree construction and tree-based layered search.

nth line of its invocation pattern sequence exists, it is
guaranteed to be included in Sn. Then, given the bytecode
of a subject app, MtdScout screens each method using
the search sets Si where (1 ≤ i ≤ m), with m being
the maximum depth of Tos. Throughout this process, if a
specific method fails to hit any of the nodes in a search
set, say Sj , then the method will no longer be screened
with the rest of the search sets Si where (j < i ≤ m),
as the aforementioned necessary condition is certain to
fail for longer signatures. Consequently, the layered search
approach allows MtdScout to effectively narrow its focus
and safely disregard impossible matches. To illustrate with
an extreme example, if a method fails to match any node
in S2, and the depth of the shortest path of Tos is 3, then
this method can be immediately dismissed since it cannot
match any known signatures.

5.3. Matching Signatures in a DFS Manner

During the layered search, MtdScout associates each
node of Tos with a lookup table, where it records the name
of methods in which the very node has been found, along
with the exact lines (bytecode addresses) that have been
matched within these recorded methods. With this setup,
MtdScout proceeds to conduct signature matching using
a specially designed Depth-First Search (DFS) on Tos,
followed by a targeted search on Toi. Specifically, using
the lookup tables, MtdScout performs a second round of
rapid pruning on Tos to remove branches representing
signatures that are guaranteed not to match any of the
screened methods in the subject app. A node of Tos and
its subtree will be pruned if any of the following three
conditions are met: (1) the lookup table of the current node
is empty; (2) there is no common method in the lookup
table of the current node and its ancestor; or (3) for the
same method in the lookup table of the current node and
its ancestor, the order of matched lines is incorrect (e.g.,
the current node matches with the third line of a method
while its ancestor node matches with the fourth line).

If a path toward a signature leaf node in Tos survives
the aforementioned pruning (i.e., reaching the leaf node
during the DFS), then the intersection of methods in the
lookup tables on that path is guaranteed to match the
signature’s invocation part in the correct order. As such,
these methods are considered candidates for potentially
matching that signature. For example, method C in the
Tos lookup tables shown in Figure 4 is a candidate for the
signature Sig3. Recall that in §5.1, a signature may only
involve Tos if it does not have an order-independent por-
tion. In such cases, MtdScout directly reports the matching
cases after the DFS on Tos. For other signatures, their po-

tential candidates are sent for further comparison with Toi.
As also mentioned in §5.1, Toi is organized differently,
with the signature descriptors placed as direct children
of the super root. Consequently, MtdScout can quickly
obtain the order-independent portions of those signatures
that survive the DFS on Tos (in the form of linked node
lists) and then search for them in the candidate methods to
make a final confirmation. For example, method C would
be considered a true match only if all nodes in Sig3’s
linked list on Toi can also be matched.

Finally, considering that the signatures generated by
MtdScout might sometimes overlap with each other, a
method may be reported as matching multiple signatures,
leading to potential false positives. To address this issue,
MtdScout adopts a winner-takes-all strategy, where, if
a method is identified as matching multiple signatures,
only the longest signature among them is considered the
true match. This rule is intuitively sensible, as longer
signatures convey more information and are less likely
to lead to incorrect matches.

6. Evaluation

In this section, we aim to comprehensively evaluate
MtdScout by answering the following research questions:
RQ1: How accurate is MtdScout in terms of precision,

recall, and F1 score?
RQ2: Can MtdScout’s method-level clone detection ef-

fectively complement the identification of missed
false negatives in traditional package-level TPL
(third-party library) detection?

RQ3: Can MtdScout effectively complement the identifi-
cation of missed false negatives in a state-of-the-art
taint analysis tool?

RQ4: Can MtdScout exclusively identify new security
findings through method-level detection?

RQ5: How fast is MtdScout in terms of running perfor-
mance?

To answer these RQs, we need to put MtdScout into
specific problems. While MtdScout can detect any kind
of DEX code issues, we target the crypto misuse prob-
lem [43] in this paper for two reasons. First, it is the most
common security issue in Android apps [43], [67], [54],
[58], [68], [57], which allows for collecting a list of vul-
nerable libraries with cryptographic misuses for compari-
son with TPL tools. Second, it has a dedicated taint analy-
sis tool called CryptoGuard [58], which leverages state-of-
the-art crypto-specific slicing techniques [58], [68]. This
allows for a comprehensive comparison of effectiveness
and performance using concrete problems.



6.1. Vulnerable Methods Targeted in This Paper
To generate a set of vulnerable method signatures,

we analyze 419 popular open-source Java libraries on
GitHub using CodeQL [6] dataflow query scripts and
LGTM [9]. Our search focuses on library methods with
crypto misuses, which serve as input for MtdScout as
explained in §3 (see Figure 2). We define six CodeQL
query rules based on the specifications in CDRep [54]
and CryptoLint [43], which correspond to the six rules of
crypto misuses covered by CryptoGuard. These rules are
listed below:

1) Encryption using Electronic Codebook (ECB) mode
2) Encryption using Cipher-Block Chaining (CBC)

mode with a static initial vector.
3) Using a constant secret key in encryption.
4) Using constant salt in Password Based Encryption

(PBE).
5) The number of iterations for PBE is less than 1000.
6) Using a constant seed for secureRandom().

From the LGTM query results, we gather descriptions
of vulnerable methods, as well as the Java source files con-
taining these methods. Using this information, MtdScout
automatically generates a signature for each vulnerable
method. Note that since LGTM outputs only the vulner-
able methods, and not the entire call chains, we discard
methods with only one or two lines of method invocations,
as they can be easily matched with irrelevant methods,
leading to false positives. Eventually, we collected 133
vulnerable methods from 44 libraries. From these results,
MtdScout successfully generated 129 signatures for the
analysis in this paper. The four failed cases all stem from
an inability to locate the target method within the source
code. Specifically, two of the cases involve constructors
of anonymous inner classes that cannot be located with
the provided information, and the other two are due to
Lambda expressions (which use a “−>” to represent an
anonymous method without explicitly indicating the name
and return type, making it difficult for MtdScout to locate),
a feature since Java 1.8.

6.2. Quantitative Experiment for Accuracy Mea-
surement

To obtain the ground truth for accuracy measure-
ment, we design a quantitative experiment that comprises
a controlled number of open-source and closed-source
apps (with no obfuscation). By employing state-of-the-
art source code clone detection tools on the source code
of the insecure methods and the target apps5, and cross-
checking their results with MtdScout’s bytecode analysis,
we can effectively minimize the manual effort required to
confirm all the outputs at the source code level.

For source code clone detection tools, we select
the widely-used SourcererCC [59] and ReDeBug [48].
SoucererCC [59] can be directly used with the source
code of our experiment set of apps. Specifically, it uses
a bag-of-token model to calculate the code similarity and
supports different granularity of clone detection, including
the method level. ReDeBug, on the other hand, is not a
pure code clone detection tool because it relies on security
patches as input. We thus adapt ReDeBug’s design logic
to our problem like BlockScope [71]. Specifically, instead

5. We obtain the source code of closed-source apps by decompilation.

of using patch code for locating contexts, we leverage
the crypto APIs as hints for pinpointing the nearby code
contexts. After locating the candidate code, our modified
version of ReDeBug directly measures its code text sim-
ilarity with the original library method source code.

Collecting the ground-truth app set. Our ground-
truth app set is extracted from our large-scale app set
described in §6.3. To facilitate the ground truth collection,
this app set should have a controlled number so that
manual confirmation is feasible, and it is better to have
open-source code or the app code without obfuscation.
We thus collect an open-source app subset and a closed-
source app subset (with no obfuscation). For the former,
we search the package names of all the collected apps
on F-Droid [7] and GitHub [15], and select the top ten
apps with the most crypto APIs. Due to the page limit
and no significant crypto misuses identified in the open-
source app subset, we put its details in Appendix A,
where we also use one open-source app to demonstrate
the obfuscation resiliency of MtdScout.

Similar to how we collect the ten open-source apps,
we gather the closed-source app subset by searching for
crypto APIs in the dexdump files (i.e., the textual form
of bytecode in an APK) of apps in the Business category,
considering apps in this category may use crypto APIs
more frequently than others. After collecting the APKs
containing crypto APIs, we filter out those obfuscated
apps by checking their class names and method names.
Eventually, we select the top ten apps with the most crypto
APIs as our closed-source app subset, as shown in Table 1.

Experimental setup and procedures. With the col-
lected two app subsets, we run them in a standard work-
station with an eight-core 2.9GHz CPU, 16GB memory,
and 300GB HDD. We first decompile each APK file into
Java source code and disassemble the app into a dexdump
file. We then run SoucererCC and the adapted ReDeBug
separately on the decompiled source code to identify the
clones of those vulnerable methods collected in §6.1.
We also instruct MtdScout to analyze the dexdump file
for our signature-based clone detection. No particular
configuration is required for running MtdScout, but we
set similarity thresholds for SoucererCC and the adapted
ReDeBug. Additionally, we set up the nearby three lines
of code (LOC) as the default context LOC for ReDeBug.

To preserve enough results for collecting ground truth,
we set up a low similarity threshold, 0.4, for both Soucer-
erCC and our adapted ReDeBug. This particular value
is chosen for two reasons. First, it is low enough to
allow us to collect many candidate clones since this value
indicates that less than half of the two methods are similar.
Second, if we further decrease the threshold from 0.4 to
0.3, the number of results outputted by the two tools will
increase around ten times, which is nearly impossible to
perform manual checking. We choose the upper bound at
0.7 because, at this threshold, the two tools will not output
false positives for most of the apps in the two subsets, i.e.,
they can achieve the best precision at this threshold. Note
that no threshold is required for MtdScout.

Accuracy measurement results. Table 1 shows the
accuracy measurement result of our quantitative experi-
ment for the closed-source app set (which has much more
ground-truth results than the results of the open-source app
set in Appendix A). We calculate the precision, recall, and



TABLE 1: The accuracy measurement results of the closed-source app subset.
com.gam municipality com.amazon.sellermobile.android com.weenysoft.word2pdf com.pms.activity com.scanbizcards

TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1
MtdScout 13|0 13 100% 100% 100% 13|0 13 100% 100% 100% 13|1 13 92.9% 100% 96.3% 13|1 14 92.9% 92.9% 92.9% 14|0 18 100% 77.8% 87.5%
RDB 0.7 0|0 13 - 0% - 0|0 13 - 0% - 0|0 13 - 0% - 0|0 14 - 0% - 3|10 18 23.1% 16.7% 19.4%
RDB 0.6 0|0 13 0% 0% - 1|13 13 7.1% 7.7% 7.4% 2|4 13 33.3% 15.4% 21.1% 1|15 14 6.3% 7.1% 6.7% 6|30 18 16.7% 33.3% 22.2%
RDB 0.5 4|217 13 1.8% 30.8% 3.4% 5|257 13 1.9% 38.5% 3.6% 8|164 13 4.7% 61.5% 8.6% 5|452 14 1.1% 35.7% 2.1% 10|493 18 2.0% 55.6% 3.8%
RDB 0.4 13|1,943 13 0.7% 100% 1.3% 12|2,135 13 0.6% 92.3% 1.1% 13|1,384 13 0.9% 100% 1.8% 13|3,681 14 0.4% 92.9% 0.7% 16|3,871 18 0.4% 88.9% 0.8%
SCC 0.7 0|0 13 - - - 0|0 13 - - - 0|0 13 - - - 0|0 14 - 0% - 4|0 18 100% 22.2% 36.4%
SCC 0.6 0|0 13 - 0% - 0|0 13 - - - 0|0 13 - 0% - 1|0 14 100% 7.1% 13.3% 5|5 18 50% 27.8% 35.7%
SCC 0.5 0|1 13 0% 0% - 0|0 13 - 0% - 0|1 13 0% 0% - 1|4 14 20% 7.1% 10.5% 7|45 18 13.5% 38.9% 20%
SCC 0.4 0|64 13 0% 0% - 0|25 13 0% 0% - 0|11 13 0% 0% - 1|121 14 0.8% 7.1% 1.5% 7|210 18 3.2% 38.9% 6.0%

com.delivery.india.client com.infraware.office.link.lg de.idnow com.coolmobilesolution.fastscannerfree com.redarbor.computrabajo
TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1

MtdScout 13|2 18 86.7% 72.2% 78.8% 13|2 16 86.7% 81.3% 83.9% 13|0 14 100% 92.9% 96.3% 11|4 18 73.3% 61.1% 66.7% 12|1 12 92.3% 100% 96.0%
RDB 0.7 3|11 18 21.4% 16.7% 18.8% 0|0 16 - 0% - 0|0 14 - 0% - 3|9 18 25.0% 16.7% 20% 1|0 12 100% 8.3% 15.4%
RDB 0.6 5|31 18 13.9% 27.8% 18.5% 1|29 16 3.3% 6.3% 4.3% 0|5 14 0% 0% - 4|29 18 12.1% 22.2% 15.7% 1|21 12 4.5% 8.3% 5.9%
RDB 0.5 5|601 18 0.8% 27.8% 1.6% 7|918 16 0.8% 43.8% 1.5% 4|279 14 1.4% 28.6% 2.7% 8|803 18 1.0% 44.4% 1.9% 4|455 12 0.9% 33.3% 1.7%
RDB 0.4 15|5,212 18 0.3% 83.3% 0.6% 15|7,936 16 0.2% 93.8% 0.4% 13|2,722 14 0.5% 92.9% 0.9% 16|6,615 18 0.2% 88.9% 0.5% 11|4,189 12 0.3% 91.7% 0.5%
SCC 0.7 4|0 18 100% 22.2% 36.4% 0|0 16 - - - 0|0 14 - 0% - 4|0 18 100% 22.2% 36.4% 0|0 12 - 0% -
SCC 0.6 4|0 18 100% 22.2% 36.4% 0|0 16 - 0% - 0|4 14 0% 0% - 5|8 18 38.5% 27.8% 32.3% 0|2 12 0% 0% -
SCC 0.5 5|40 18 11.1% 27.8% 15.9% 0|2 16 0% 0% - 0|15 14 0% 0% - 5|68 18 6.8% 27.8% 11.0% 0|7 12 0% 0% -
SCC 0.4 5|228 18 2.1% 27.8% 4.0% 0|55 16 0% 0% - 0|213 14 0% 0% - 5|371 18 1.3% 27.8% 2.5% 0|172 12 0% 0% -

F1 score for each app. The blue color indicates the highest
number of each metric of an app. As shown in Table 1,
MtdScout has the highest F1 score on all the ten apps in
this subset, the highest precision on seven apps, and the
highest recall on six apps. On average, MtdScout achieves
92.5% precision, 87.2% recall, and 89.5% F1 score.

In contrast, the adapted ReDeBug can only achieve a
high recall when at the 0.4 threshold (similar to that on
the open-source app subset). Its recall drops quickly when
the threshold increases, and it even drops to 0 for five apps
when the threshold increases to 0.7. On the other hand,
SourcererCC does not output any result for six apps at
four thresholds, and on the other four apps, it can only
get less than 40% recall, which is the worst of the three
tools. Although it can achieve nearly 100% precision, its
total number of true positives is only 18, while the total
ground truth is 150, which makes it less practical under
our scenario. Note that the low recall is not caused by
incomplete decompiled source code, since ReDeBug is
conducted on the same input yet outputs true positives.

The metrics on both subsets show that MtdScout can
achieve a high precision while maintaining a high recall
without the need to set a threshold. Moreover, it outputs
zero or very few false positives when an app does not
contain a vulnerable method clone. Compared with other
tools, they either achieve a high recall yet with a low
precision or a high precision yet with a low recall.

Answer for RQ1: MtdScout demonstrates superior ac-
curacy with 89.5% F1 score for apps in the closed-
source set, averaging 92.5% precision and 87.2% recall.

6.3. Large-scale Experiment for Effectiveness
Comparison

In this section, we conduct a large-scale experiment
with three objectives. First, this experiment enables us
to present the distinct results of MtdScout’s method-
level clone detection. Second, by comparing MtdScout’s
findings with those of LibScout [30], we can assess Mtd-
Scout’s effectiveness in complementing the identification
of missed false negatives in TPL detection. Third, we com-
pare MtdScout’s result with those of CryptoGuard [58] to
assess its capability to complement the identification of
missed false negatives in static taint analysis.

A large dataset. To build a large app dataset, we
select the top apps from all the 51 categories on Google
Play, such as Communication, Business, Social, etc. For

each category, we collected the top 500 apps based on
the ranking list from Androidrank [4]. We then collected
the most recent Google Play version of these apps from
AndroZoo [25]. Since AndroZoo does not have some of
the apps, or the ranking itself contains less than 500 top
apps, we were able to obtain, on average, 470 apps per
category. Eventually, we collected a total of 23,962 APKs
from Google Play for the experiment.

Experimental setup. We ran this large-scale exper-
iment on a more powerful machine with 40×2.2GHz
CPUs, 32GB memory and 2TB storage for parallel ex-
ecution with multiple threads. Moreover, as mentioned in
§6.1, MtdScout utilizes 129 insecure method signatures
from 44 libraries for the analysis in this section.

MtdScout’s results. MtdScout outputs a set of
matched clone pairs for each app, i.e., RMS =
{<msig,mdex>}, where msig represents the signature
of the original insecure method and mdex represents the
detected method clone in the app’s DEX bytecode. Among
the 44 source libraries, 17 were detected by MtdScout with
insecure method clones in our app set. Table 2 provides
detailed method-level clone detection results, showing the
18,944 clone pairs between 45 method signatures of 17
libraries and the 7,618 methods found in 2,990 apps. This
means that more than one-third of the total 129 method
signatures have been cloned, with a single signature being
matched with up to 1,464 method clones. Upon further
examination of the method signatures across these 17
libraries, it was observed that three of them share two
method signatures. Fortunately, these identical signatures
do not affect the fairness of the comparison between
MtdScout and LibScout, as none of the 18 libraries used
for comparison share the same signature (refer to §6.3.1).
Also, these signatures do not impact the fairness in com-
paring MtdScout with CryptoGuard, since having the same
method signature does not alter the number of detected
apps (see §6.3.2).

Out of the total 17 libraries in the result, four (24%)
have method clones detected by MtdScout across all
51 categories of apps. Despite the maximum number of
method signatures cloned from each library being only six,
on average, each signature is associated with 421 clone
pairs and involves 66 apps. Additionally, we observe that
even libraries with a single vulnerable method signature
can influence apps across all 51 categories. For example,
the signature of Rule 3 from apache/cloudstack
affects apps across all categories (see Table 2). These



TABLE 2: Detection results of MtdScout and LibScout (shown in bold font within brackets).

Library Name # of unique items # of method clone pairs
Sig App Mtd Ctg Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total

songxiaoliang/EncryptionLib 6 192 200 40 400 0 0 0 0 0 400
bwssytems/ha-bridge 6 23 (0) 24 16 (0) 25 0 0 25 25 0 75
zaproxy/zaproxy 4 1,583 4,000 51 5,424 0 0 0 0 0 5,424
AsyncHttpClient/async-http-client 4 1,583 3,443 51 4,866 0 0 0 0 0 4,866
MyCATApache/Mycat-Server 4 27 (0) 27 18 (0) 54 0 0 0 0 0 54
apache/httpcomponents-client 3 1583 (2) 3,002 51 (2) 4,425 0 0 0 0 0 4,425
aa112901/remusic 3 189 192 40 192 0 178 0 0 0 370
apache/poi 3 17 (17) 17 8 (12) 51 0 0 0 0 0 51
aws/aws-sdk-java 2 210 (626) 210 42 (51) 420 0 0 0 0 0 420
mike-ensor/aes-256-encryption-utility 2 169 169 41 0 169 169 0 0 0 338
alibaba/druid 2 3 (0) 3 3 (0) 6 0 0 0 0 0 6
apache/cloudstack 1 1,380 1,381 51 0 0 1,381 0 0 0 1,381
igniterealtime/Openfire 1 681 698 50 0 0 698 0 0 0 698
alibaba/nacos 1 425 (0) 425 50 (0) 0 0 425 0 0 0 425
HussainDerry/secure-preferences 1 1 1 1 1 0 0 0 0 0 1
matrix/Burp-JCryption-Handler 1 7 7 6 0 7 0 0 0 0 7
justauth/JustAuth 1 3 (0) 3 3 (0) 0 0 3 0 0 0 3
Union 45 2,990 7,618 51 15,864 176 2,854 25 25 0 18,944
The rows displayed in bold font indicate that the corresponding library was also tested by LibScout, with LibScout’s number listed in brackets.
“Sig” and “Ctg” stand for “signatures” and “categories” respectively. The number of signatures refers to those with a method-level clone result.

findings highlight the prevalence of vulnerable code clones
across different types of applications, emphasizing the
urgent and critical need to detect and address these clones.

Regarding the rules of crypto misuses (as outlined in
§6.1), we identified 2,650 apps, each of which exhibits
multiple types of crypto misuses. Furthermore, among the
clone pairs, we identified 371 methods, each of which
is linked to a single signature associated with multiple
rules. A more comprehensive explanation of this finding
can be found in §6.4. The most frequent issue, making up
83.7% (15,864) of the clone pairs, is related to encryption
using ECB mode. No matching results were found for
Rule 6, which involves the use of a constant seed for
secureRandom(). This is primarily due to the limited
number of signatures collected for Rule 6.

6.3.1. Comparison with LibScout. To demonstrate Mtd-
Scout’s effectiveness in complementing the identification
of missed false negatives in TPL detection, we conduct a
comparison between MtdScout and a representative library
detection tool based on the results obtained by MtdScout.
Among the various library detection tools available [69],
[55], [30], [53], [74], [72], LibScan [69] is a recent state-
of-the-art tool; however, in our testing, it struggled to
generate meaningful results in our dataset unless we set
its similarity threshold as low as 0.4 (at which point the
results become unstable). ATVHunter [72] is integrated
into a non-open-source online service, making it unsuit-
able for use with our own library dataset. LibRadar [55],
[17] relies on its own outdated library database that has not
been updated in over five years. Additionally, LibExtrac-
tor [74] and LibD [53] employ clustering-based methods
and do not rely on feature matching with a given set of
libraries. Therefore, we have chosen LibScout [30], the
most widely used open-source library detection tool, for
our comparison. LibScout also provides a script [18] that
allows us to generate library profiles ourselves.

To use LibScout for matching APKs with the input
libraries, it is necessary to first generate library profiles
using the libraries’ Jar files. Out of the 44 libraries col-
lected in §6.1, we were able to obtain 18 Jar files from
libraries’ Maven and corresponding GitHub websites. For

the remaining 26 libraries, either the specific version
of compiled Jar files was not released, or we failed to
compile the specific version of the library source code.
Therefore, we utilized LibScout to generate profiles for
the 18 available libraries and conducted matching on the
23,962 apps using these profiles. It is worth noting that
while MtdScout utilized all 44 libraries for the large-scale
experiment, in this comparison, we only present the results
related to the 18 libraries to ensure a fair comparison.

Unlike MtdScout, which outputs a set of method pairs,
i.e., RMS = {<msig,mdex>}, LibScout’s result consists
of library-application pairs, i.e., RLS = {<lib, apk>}. To
make the results comparable, we transform the output of
MtdScout into a set of library-application pairs as well. We
represent the method signatures using the corresponding
library names and indicate the application name where
MtdScout identifies the target method clones. Note that
MtdScout is designed for detecting method clones rather
than third-party libraries. Therefore, to ensure a fair com-
parison, we also checked the method signatures of the
18 libraries and found that none of them share the same
signature, ensuring that these signatures serve as unique
identifiers for the libraries.

Comparison results. Out of the 18 libraries analyzed
by both MtdScout and LibScout, only three of them
were detected by LibScout in the tested 23,962 apps. In
contrast, MtdScout detected method-level clones in eight
libraries across the same set of apps, and the three libraries
detected by LibScout are a subset of the eight libraries
detected by MtdScout. In Table 2, we highlight these eight
libraries and present the detection numbers of MtdScout
and LibScout using bold fonts, with the number of Lib-
Scout listed in brackets. The result shows that LibScout
only has comparable or higher detection numbers on two
libraries, (i.e., aws-sdk-java and apache/poi). In
the following paragraphs, we analyze in more detail from
the perspective of library-application pairs to explain the
differences in results between the two tools. More security
findings are available in §6.4.

For the 18 libraries analyzed, MtdScout identified
2,291 <lib, apk> pairs, while LibScout identified only
645 pairs. Among these, 139 pairs were detected by



both tools, accounting for only 6.1% of all MtdScout’s
results. This implies that there are 2,152 pairs detected
exclusively by MtdScout. Given this substantial number,
manually inspecting all these pairs is impractical. Hence,
we randomly sampled 100 pairs to investigate why Lib-
Scout failed to detect them. Since each <lib, apk> pair
may have one or more combinations of signatures and
target methods, for each <lib, apk> pair, we randomly
selected one <msig,mdex> pair for analysis. For each
sampled method pair, we compare the package names of
mdex and msig to determine whether mdex is an imported
library method or a cloned method. If the package name of
mdex is obfuscated, we compare its hierarchy to identify
the imported method. Through our analysis, we identified
three reasons for the discrepancies:

• Among 32% of the sampled pairs, the vulnerable
library methods indeed exist in the corresponding
apps, but certain library class files within the host
app package have been either removed or modified by
Android’s default app shrinking [10]. Further details
on this observation are discussed in §6.4.

• In 63% of the sampled pairs, the methods are indeed
cloned instead of being imported from the libraries,
making the corresponding packages in the apps differ
from the libraries. This implies that the APKs do not
utilize the corresponding libraries, rendering these
pairs undetectable by LibScout. A more comprehen-
sive explanation of this finding is provided in §6.4.

• Only 5% of the sampled pairs are due to the false
positives of MtdScout, which is consistent with the
measurement in §6.2.

Out of the 506 pairs detected exclusively by LibScout,
which accounts for approximately 78.4% of all the pairs
detected by LibScout, we also sampled 50 pairs. For
each pair, we identified the method signatures of the
corresponding library and investigated why MtdScout did
not identify them in the corresponding APK. In all the
sampled pairs, it was observed that although LibScout
detected the presence of the library in an app, the app
itself did not contain the target vulnerable methods. This
absence leads to MtdScout’s inability to detect them. The
reason LibScout can detect the library even in the absence
of target methods is that other packages or class files
contribute to the similarity score that exceeds LibScout’s
threshold. This discovery emphasizes that the detection
of a library does not necessarily imply the existence
of a specific vulnerable method. Further details on this
observation are provided in §6.4.

Answer for RQ2: MtdScout effectively complements
LibScout by identifying its missed false negatives
related to Android app shrinking and method-only
cloning, with a sampled accuracy of 95%.

6.3.2. Comparison with CryptoGuard. In real-world
scenarios, app markets often employ dataflow analysis
tools like CryptoGuard [58] to scan their apps for crypto
misuses. CryptoGuard is a dedicated dataflow analysis tool
that utilizes state-of-the-art crypto-specific slicing tech-
niques [58], [68]. As such, we evaluated the effectiveness
and the running performance of MtdScout by compar-
ing it with CryptoGuard on our large dataset of 23,962
APKs. Both MtdScout and CryptoGuard were executed

in parallel using ten threads. Note that we configured
CryptoGuard with the same set of six rules as MtdScout
(outlined in §6.1) to ensure a fair comparison. Addition-
ally, we set a timeout of 30 minutes for each APK when
running CryptoGuard, as it may encounter infinite loops
when encountering cycles in its dataflow graph. MtdScout,
on the other hand, does not face this issue since our search
trees are acyclic, as explained in §5.1.

Effectiveness results. Figure 5 provides a visual rep-
resentation of the apps detected by CryptoGuard and
MtdScout. In summary, CryptoGuard identified 23,761
insecure methods within 5,065 APKs, while MtdScout
found 7,618 methods in 2,990 apps. CryptoGuard, which
detects general crypto misuses in apps as opposed to
specific insecure method clones, naturally reports a higher
number of findings compared to MtdScout. The bars
labeled CG apps in the figure represent the insecure
apps identified exclusively by CryptoGuard, amounting
to around 149 apps per category. Meanwhile, MtdScout
exclusively identified approximately 47 apps, as indicated
by the bars labeled MS app, MS App (CG timeout), and
MS app (CG error). Unlike other taint analysis tools,
CryptoGuard does not skip the analysis of third-party
libraries. However, this comprehensive approach leads to
timeouts for 8,086 apps (attributed to the expensive call
graphs generated by FlowDroid [27], as discussed in [68])
and internal errors for 7,590 apps (due to the whole app-
based analysis for call graphs). As a result, CryptoGuard
could only process 34.6% (8,286) of the input apps.

MtdScout successfully scanned all the apps that Cryp-
toGuard failed to analyze due to errors or timeouts,
complementing the identification of insecure methods.
Specifically, MtdScout supplemented the detection in
2,304 apps that CryptoGuard could not analyze (see
MS App (CG timeout) and MS app (CG error)), identi-
fying 5,897 insecure methods. It is worth noting that even
if CryptoGuard had been able to process these apps, it
might not have identified all the methods that MtdScout
did. Furthermore, MtdScout also exclusively identified
262 insecure methods that CryptoGuard missed in 74
processed apps (see MS app). This highlights the value
of using MtdScout to complement the identification of
insecure methods by taint analysis tools like CryptoGuard.

Answer for RQ3: MtdScout effectively complements
CryptoGuard by identifying a considerable number of
false negatives, which are hardly avoided due to inher-
ent timeouts and failures in the expensive taint analysis.

6.4. Security Findings and Case Study
Following a brief introduction to some of the findings

in §6.3, this section gives more elaboration about the
security findings obtained from the large-scale experiment.

Finding 1: Class files within the host app package
could be either removed or modified by Android
app shrinking, leading to a lower similarity score in
package-level library detection. As mentioned in §6.3,
among 32 of the 100 sampled library-application pairs,
the vulnerable library methods do indeed exist in the
corresponding apps and can thus be detected by MtdScout.
However, some class files from the library within the host
app package have been either removed or modified by
Android’s default app shrinking [10], leading to a lower
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Figure 5: The number of detected apps in each category by CryptoGuard and MtdScout.

similarity score that falls below LibScout’s threshold.
For example, in the br.com.intermedium app, the
com.amazonaws.util package originally contained
65 classes, but due to app shrinking, only 27 classes re-
main in the package, leading to the detection discrepancy.

Finding 2: Many apps copy code from libraries
instead of importing them, rendering package-level
library detection ineffective. Among the 100 sampled
pairs, we found that 63% of them contained copied code
from another library. For instance, com.amazonaws.
auth library copied a method from the com.alibaba.
nacos library to generate a message authentication code
(MAC) with a constant salt value. Indeed, 858 methods in
the results implemented the same salt and MAC generation
process. Further analysis revealed that about 77.6% (666)
of these methods were copied code rather than imported
code. These copied methods inherit the same vulnerabil-
ities as the original code. However, package-level detec-
tion cannot identify copied methods solely by matching
the original package, as an app may only copy specific
methods without including other parts of the package.
Moreover, while CryptoGuard can detect these methods,
it cannot determine them as copied code.

Finding 3: The detection of a library in an app
does not guarantee the presence of corresponding
vulnerable methods in that app, rendering package-
level library detection unreliable for identifying vul-
nerable library methods. As described in §6.3, af-
ter sampling 50 library-application pairs from the 506
pairs detected exclusively by LibScout, we found that
none of the vulnerable methods existed in the corre-
sponding applications, making them undetectable by Mtd-
Scout. This discrepancy can be attributed to optimiza-
tion mechanisms [10] during compilation, where only
the utilized components of a library are included in
the APK file, while the rest are removed. For example,
LibScout detects the library aws/aws-sdk-java in
the app com.Slack, whereas MtdScout does not out-
put the pair. Upon examining the app’s bytecode and
the library’s Jar file, we discovered that the vulnera-
ble method exists in the package com.amazonaws.

services.s3.crypto. However, while the app con-
tains the package com.amazonaws.services, the
subpackage s3.crypto is absent. This demonstrates the
inadequacy of relying on package-level library detection
tools for identifying vulnerable library methods in apps.

Finding 4: Many single methods contain multiple
crypto misuses, a finding that can not be revealed by
package-level approaches. We found that 371 methods
in our result can be matched with the signatures of two
or more crypto misuse rules. Among these methods, 178
(48%) utilize ECB mode and a constant secret key for
encryption (Rule 1 and 3), while 169 (45.6%) employ
CBC mode with a static initial vector and a constant secret
key (Rule 2 and 3). Among the remaining 25 methods,
24 of them perform password-based encryption with ECB
mode and a constant secret key, with iterations below
1000 (Rule 1, 4 and 5). The presence of multiple crypto
misuses within a single method exacerbates the insecurity
of encryption. Notably, previous studies did not explore
this scenario at the method level and did not reveal that a
single method could contain multiple crypto misuses, as
their focus was on package-level or app-level detection.

Case study. 2,624 apps (87.8% of the apps in the
result) were found to contain methods that utilize constant
keys for encryption, which may result in privacy breaches
if attackers use the key to decrypt transmitted information.
For example, the gaming app com.tencent.godgame,
developed by Tencent, includes a method using a constant
string as the symmetric encryption key. The app com.
xiaomi.hm.health, developed by Xiaomi, utilizes a
method that uses a constant salt when generating a secret
key. An attacker can easily obtain this constant salt by
decompiling the APK, and conduct a dictionary attack.

Ethics. We have responsibly reported the identified
issues to the respective vendors for appropriate action.
For example, we reported the issue in com.tencent.
godgame, where constant keys were used for encryption,
to the Tencent Security Response Center [20]. Similarly,
we reported the issue in com.xiaomi.hm.health,
where constant salts were used for secret key generation,
to the Xiaomi Security Center [22].
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Answer for RQ4: Our analysis reveals four security
findings that shed light on the root causes behind the
greater effectiveness of MtdScout’s method-level clone
detection compared to package-level library detection.

6.5. Running Performance
We evaluate the running performance of MtdScout

and demonstrate its efficacy by comparing it with Cryp-
toGuard [58]. Overall, MtdScout requires only about 52
hours to complete the analysis of the entire dataset. This
translates to an average running time of approximately
8.6 seconds per app when executed in parallel. On the
other hand, CryptoGuard took around one month (specifi-
cally, 27 days) to analyze the same dataset, despite being
configured with a 30-minute timeout and parallelized with
ten threads. In contrast, MtdScout encountered failures for
only 89 APKs, which account for less than 0.4% of the
entire dataset. To ensure reliable performance comparison,
we excluded the 7,590 APKs that encountered internal
errors, as their time does not accurately represent the
actual analysis duration.

Figure 6 presents the CDF (cumulative distribution
function) plot of per-app running time for the 16,372
APKs analyzed by both tools. As shown in the blue
curve, MtdScout completes the analysis for 80% of the
apps within ∼100 seconds. In contrast, the red curve
shows that only 35.7% of the apps could be analyzed by
CryptoGuard within 750 seconds, within the time frame of
which MtdScout can analyze all the apps. Furthermore, at
the 80% time point of MtdScout (105 seconds), only 6.6%
of the APKs could be analyzed by CryptoGuard. In terms
of median time, MtdScout performs at 52 seconds, while
CryptoGuard takes significantly longer at 1,645 seconds.
Thus, MtdScout is 31.6 times faster than CryptoGuard in
terms of analysis speed.

We conducted additional measurements to evaluate the
impact of bytecode size (lines of dexdump file) on the
analysis time of MtdScout. The results, shown in Figure 7,
indicate a nearly linear relationship between bytecode size
and analysis time. This finding suggests that as the byte-
code size increases, the running time of MtdScout does
not exponentially grow. Additionally, MtdScout performs
matching directly on the dexdump file, whereas traditional
source code clone detection tools require decompilation
of APKs into source code. Disassembling an APK into a
dexdump file typically takes only a few seconds or less,
whereas decompilation can take several minutes or longer.
Therefore, MtdScout exhibits greater efficiency compared
to source code clone detection tools.

Answer for RQ5: MtdScout is quite fast, with the me-
dian time for analyzing each app 31.6 times faster than
CryptoGuard. Moreover, the running time of MtdScout
scales linearly with the size of the app’s bytecode.

7. Discussion
Obfuscation and packers. Currently, MtdScout is

resilient to identifier obfuscation (e.g., ProGuard) and
certain code optimizations (e.g., function inlining). Mtd-
Scout can also adapt to Java reflection [21] because
standard reflection APIs such as Class.forName()
and Method.invoke() can be translated into invoca-
tion signatures, with their parameters recorded as con-
stant strings representing the reflected names. However,
MtdScout’s performance may be affected by more com-
plex obfuscation techniques, such as VM-based obfusca-
tion [31], [13], [11] that modify the order of instructions
or encrypt the DEX code. We also did not test MtdScout
with advanced obfuscators like DexGuard [23]. Exploring
solutions to counteract sophisticated obfuscation could
be considered for future work. Additionally, MtdScout is
unable to analyze packed APKs [42] due to the inability
to access the original DEX code. Unpacking APKs is a
separate problem that falls outside the scope of this work.

Lack of semantic information. During signature gen-
eration, MtdScout does not take into account the control
flow graph (CFG) information when converting method
invocation statements into bytecode instruction sequences.
Consequently, if a vulnerability is patched with a minor
instruction-level modification that does not change the
overall instruction order, MtdScout may incorrectly iden-
tify the patched method as its vulnerable version, resulting
in false positives. For example, if a patched method only
modifies the trigger condition of a crucial branch, the
patched version may be mistakenly flagged. In our future
work, we aim to enhance the order-sensitive portion of
our signatures by incorporating additional information to
address such scenarios and improve accuracy.

8. Conclusion

In this paper, we introduced MtdScout, a cross-layer,
method-level clone detection tool designed to detect inse-
cure open-source method clones in Android apps at the
bytecode level, aiming to address the inherent false nega-
tives in existing TPL and taint analysis methods. MtdScout
generates bytecode signatures for flawed source methods
using compiler-style interpretation and abstraction and
matches them efficiently with target app bytecode using
layered searches over signature-mapped trees. Our quan-
titative experiment showed that MtdScout outperforms
three tested clone detection tools, achieving a precision
of 92.5% and a recall of 87.2%. A large-scale experiment
with 23.9K Google Play apps further demonstrated Mtd-
Scout’s ability to complement LibScout and CryptoGuard
in identifying insecure methods and highlighted its su-
perior efficiency compared to CryptoGuard. Additionally,
our experiment revealed four security findings, highlight-
ing the disparities between MtdScout’s method-level clone
detection and traditional package-level library detection.
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TABLE 3: The accuracy measurement results of the open-source app subset.
org.coolreader com.wire org.telegram.messenger com.fsck.k9 org.connectbot

TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1
MtdScout 14|0 18 100% 77.8% 87.5% 0|0 1 - 0% - 0|0 0 - - - 1|1 1 50% 100% 66.7% 0|1 0 0% - -
RDB 0.7 3|9 18 25.0% 16.7% 20% 0|0 1 - 0% - 0|0 0 - - - 0|0 1 - 0% - 0|1 0 0% - -
RDB 0.6 5|12 18 29.4% 27.8% 28.6% 0|0 1 - 0% - 0|1 0 - - - 0|0 1 - 0% - 0|4 0 0% - -
RDB 0.5 8|219 18 3.5% 44.4% 6.5% 1|22 1 4.3% 100% 8.3% 0|35 0 0% - - 0|25 1 0% 0% - 0|156 0 0% - -
RDB 0.4 16|1,460 18 1.1% 88.9% 2.1% 1|305 1 0.3% 100% 0.7% 0|439 0 0% - - 1|280 1 0.4% 100% - 0|1,050 0 0% - -
SCC 0.7 4|0 18 100% 22.2% 36.4% 0|0 1 - 0% - 0|0 0 - - - 0|0 1 - 0% - 0|0 0 - - -
SCC 0.6 4|6 18 40% 22.2% 28.6% 1|0 1 100% 100% 100% 0|0 0 - - - 0|0 1 - 0% - 0|0 0 - - -
SCC 0.5 4|48 18 7.7% 22.2% 11.4% 1|0 1 100% 100% 100% 0|1 0 0% - - 0|0 1 - 0% - 0|2 0 0% - -
SCC 0.4 4|162 18 2.4% 22.2% 4.3% 1|45 1 2.2% 100% 4.3% 0|10 0 0% - - 0|14 1 0% 0% - 0|4 0 0% - -

com.ichi2.anki de.schildbach.wallet fr.gouv.android.stopcovid net.nurik.roman.muzei org.xbmc.kore
TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1 TP|FP GT Preci Rec F1

MtdScout 12|0 12 100% 100% 100% 1|0 2 100% 50% 66.7% 0|0 0 - - - 0|1 0 0% - - 0|0 0 - - -
RDB 0.7 0|0 12 - 0% - 1|1 2 50% 50% 50% 0|0 0 - - - 0|0 0 - - - 0|0 0 - - -
RDB 0.6 0|4 12 0% 0% - 1|6 2 14.3% 50% 22.2% 0|0 0 - - - 0|8 0 0% - - 0|0 0 - - -
RDB 0.5 4|109 12 3.5% 33.3% 6.4% 1|148 2 0.7% 50% 1.3% 0|0 0 - - - 0|123 0 0% - - 0|16 0 0% - -
RDB 0.4 8|686 12 1.2% 66.7% 2.3% 1|926 2 0.1% 50% 0.2% 0|17 0 0% - - 0|847 0 0% - - 0|382 0 0% - -
SCC 0.7 0|0 12 - 0% - 0|0 2 - 0% - 0|0 0 - - - 0|0 0 - - - 0|0 0 - - -
SCC 0.6 0|0 12 - 0% - 2|0 2 100% 100% 100% 0|0 0 - - - 0|0 0 - - - 0|0 0 - - -
SCC 0.5 0|1 12 0% 0% - 2|13 2 13.3% 100% 23.5% 0|0 0 - - - 0|0 0 - - - 0|0 0 - - -
SCC 0.4 0|8 12 0% 0% - 2|93 2 2.1% 100% 4.1% 0|117 0 0% - - 0|11 0 0% - - 0|8 0 0% - -

Appendix
In §6.2, we also tried to find open-source apps from

the large-scale app set mentioned in §6.3. Specifically,
we searched the package names of all the apps on F-
Droid [7] and GitHub [15] to determine whether they
are open-sourced, which allows us to identify 71 open-
source apps. However, some apps may not contain the
vulnerable library methods we are interested in. We thus
conduct a pre-search (by searching both the source code
and dexdump files to count the number of crypto APIs
used in these 71 apps and choose the top ten apps with
the most crypto APIs as our open-source app subset, since
they have a higher chance to contain vulnerable library
methods. The detailed package names of these ten apps
are shown in the first row of Table 3. The blue color
indicates the highest number of each metric of an app,
and the green color of Table 3 means this tool outputs no
result when the ground truth is zero.

In the open-source app subset, only two apps, org.
coolreader and com.wire, have been affected by
multiple clones of vulnerable library methods. Other apps
contain only less than two pairs of ground truth or even
zero. This helps us understand how MtdScout would
perform if an app does not contain any clone. The lack
of ground truth in this subset is another reason why we
need one more subset of apps for evaluation. In the close-
source app subset, the average number of ground truth is
15, which can better evaluate the accuracy of MtdScout
and make a fairer comparison with other tools.

The result of open-source app subset. According to
Table 3, SourcererCC has a high precision at a high thresh-
old yet with a very low recall, while our adapted ReDeBug

has a high recall at a low threshold yet with thousands of
false positives. Neither of them achieves a good F1 score,
except for com.wire and de.schildbach.wallet
which have only one or two ground truths. This indicates
that under our problem scenario, both tools cannot find a
good balance between precision and recall, which makes it
hard to choose a suitable threshold. In contrast, MtdScout
achieves the highest recall in com.ichi2.anki and the
second-highest recall in org.coolreader, are the two
apps with the most ground truth. On both apps, MtdScout
also has the highest precision and F1 score. Moreover,
MtdScout also does not output any false positive for the
three apps with no ground truth, as shown in the green
color of MtdScout row in Table 3. For other apps with
zero or few vulnerable clones, the difference between the
true positives outputted by MtdScout and the ground truth
is less than one.

Obfuscation Resiliency. To check the obfuscation
resiliency of MtdScout, we use the open-source app
com.ichi2.anki and compile it into an APK file with
the obfuscation by R8 compiler [10]. Specifically, we set
the rule that all identifiers will be obfuscated, and the
R8 compiler generates a table that maps the obfuscated
identifiers to their original names. Based on this one-to-
one relationship, we can recover the obfuscated matched
methods outputted by MtdScout and determine whether it
achieves the same accuracy.

We found that MtdScout still outputs 12 clone pairs.
After recovering them to the original method names, the
result pairs are the same as the results generated by the
non-obfuscated version. This confirms that MtdScout is
resilient to identifier obfuscation, which mainly benefits
from non-obfuscated key statements used in our signature
generation.
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